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ABSTRACT

The synthesis of microwave broadband equalizers, comprised solely of a

cascade of lossless equilength transmission lines operating between a resistive

generator and a resistive load, has been thoroughly established in the literature!

For this class of network, equiripple response specification is accomplished through

recourse to techniques employed in the analogous lowpass lumped-parameter case.

The d.c. point, at which the lines become transparent, enables one to readily pre-

scribe the value of the load resistance.

This thesis considers the case in which the aforementioned cascade con-

figuration is augmented by the presence of lossiess transmission line stubs, having

lengths commensurate with those of the lines. Tchebycheff-type response specification

is developed for specific types of this generic class, which, because of the stubs,

possess finite w-frequency zeros of transmission.

One specific type of particular interest is the single shunt short-circuited

stub bandpass filter. This network is explicitly considered in the following section

of the thesis. A means for the a priori determination of load resistance and stub

characteristic impedance, with the stub at a given end of the cascade, is developed.

A technique is then evolved whereby one may, by altering the stub position,

systematically adjust the value of the terminating resistance.

The last segment of the thesis is devoted to the design of a reflection-type

tunnel diode amplifier, utilizing a transmission line equalizer. The diode parasitics

are approximated in the frequency band of interest by transmission line stubs. This

approximation circumvents the problem of transcendental functions inherent in

lumped reactance-transmission line mixtures and enables the adaptation of the

above-mentioned equiripple response functions by an extension of the Fano theory

of broadbanding.
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I. INTRODUCTION

The general network structure to be herein considered is that of a lossless

reciprocal two-port, comprised of a cascade of equilength transmission lines

augmented by transmission line stubs, operating between a resistive generator and

a resistive load. The initial problem to be treated is the prescription of an

equiripple response characteristic, which may be physically realized by particular

types of the above general structure.

The network approach which will be used is that of the scattering formalism,
23

the subject of papers by Carlin and Youla. Consider the basic system, as shown

in Figure 1.

RG

( -b2 RL= b, TWO - PORT

Figure 1 - System Representation

This system is described by the following scattering matrix representation:

[b 1  s 1 1 (p) s 1 2 (p) [a 1 ]

11 Ij1)1
bz Es.a12 (p) s 22 (p)J _az.

where a 1 , a2 are the incident "voltage" waves; b1 , b2 are the reflected "voltage"

waves; p is the complex frequency variable, equal to a + jw.

The choice of the scattering formalism is motivated by its particular

adaptability to the problem at hand. Consider the following properties, which are

delineated in reference 2:

a) The constraint of losslessness upon the two-port equalizer necessitates that:

[S1(p)] [S(p)] = 12. a 2 x 2 unit matrix. (the prime

denotes transpose) (Za)

Furthermore, because of reciprocity, s21 = s12. (2b)
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b) If the port normalization numbers are chosen as equal to the respective
port terminations, RG and RL, Is21(Jo)2 = jsl 2(jW)j becomes identical

to the power transfer ratio, referred to generator available power. Thus,

I S1 2 (J ) 12 becomes a direct measure of the available gain of the network

between the prescribed terminations.

c) If port 2 is normalized to its termination, RL , (upon which a 2 = 0),

b
sl a = - (3)
11 in a1

That is, the Sll coefficient of the lossless two-port becomes equal to the

input scattering coefficient of the one-port, comprised of the lossless

equalizer terminated in RL.

These properties, in essence, outline the synthesis procedure. The

specification of an equiripple power transfer characteristic is tantamount to the

prescription of I~ I , subject to the above normalization constraints. Since,

from the unitary condition (2a);

Ilil8 = 1 -18121 (4)

1s 11 2 is thereby also prescribed. The proper factorization will then yield s = Sin'

from which the input immittance function can be readily ascertained.

Thus, the problem of equiripple response specification becomes that of

prescribing an analytic form for 19s12 2 which will both produce the desired shape

and be physically realizable as the desired network. The type of network to be

herein considered is, as was previously stated, the cascade of transmission lines

augmented by stubs. Therefore, let us initiate the investigation of this problem by

considering a transmission line of length I and characteristic impedance Z
0

II 124

i, 2 ni

Figure 2 - Transmission Line
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Its impedance matrix is:

coth - p csch Ip

[z] = z°  V (5)

cchAp c th IP v p

where

v = velocity of propagation

p= a+j(

The corresponding scattering matrix of this two-port (normalized arbitrarily

to I ohm at each port) is readily determined by the relation:

IS = -+ (6)
i]=[[Z] 2 1][Z] 1]-

where the minus one exponent denotes inverse.

The resultant matrix is:

171.i ! -) + 1) 2 Z sech -p
___I__________0_ 0 v (7)

[S] [(tan!hp)LZ + )(+2(tanh 0 ) 2 Z sechp (tanhI p)(Z - 1)

It is evident from these considerations that the dependence of the pertinent

parameters upon the frequency variable, p, is transcendental. At real frequencies

( = 0; p = jw) their behavior is periodic, with the first period being

-r < I <i (8)

2-v -2

It is this transcendental dependence of the functions upon p which makes

further consideration of the problem in the p-domain unfeasible.
4

It has been shown by Richards that the complex frequency transformation:

X= tanh ii = + j (9a)

with
I
v p P aI + j~ 1 (9b)

removes this difficulty. That is, an input immittance function or reflection factor

of an arbitrary configuration of lossless transmission lines and resistors, which is

a transcendental function in the p-plane, becomes a rational function in the X -plane.
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This p-to-X plane mapping is not a unique, or one-to-one, mapping. On

the contrary, since its primary purpose is to transform the transcendental p-plane

functions into polynomial-type X. fUnctions, it must, among other things, transform

each jw-axis period into an infinite interval.

Thus, strips of the jw axis of length jw j, the firs! extending from

-j 1 v to +j w v, each map onto the entire j 0 axis. The positive a -axis maps

onto the positive 2-axis between 0 and 1; the negative a-axis maps onto the l,-axis
wv

between 0 and -1. The line p= j - maps onto the T,-axis between or and +1 for

> 0 and between - c and -I for 01 < 0. The mapping of the upper portion of the

first right-half p-plane strip onto the X -plane is shown in Figure 3.

P - PLANE X- PLANE
jw (olo)

A

B (ott) " 9 - (otWO)

Figure 3 - Richards Frequency Transformation

A realizable reflection factor s(p) of the type encountered in transmission

line networks must be a "bounded-real' p-plane function. That is,

a) s(p *) = s(p) (the asterik denotes complex conjugate)
b) s(p) is analytic in a > 0 (10)

c) 0< Is(j ) < 1
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Thus, an essential property of the Richards transformation is its mapping

of the right-half p-plane into the right half X -plane and its mapping of the j w-axis

onto the j91 axis. This causes the above properties of s(p) to be carried over into

8(X).

In terms of the new frequency variable X , the scattering matrix of the

transmission line becomes: :(Z -1) 2 z IV/, 1[sJ= I o111)

(s] X(ZZ +l)+ 2 z; 2Zo z(./I - )

The ultimate network of interest is the cascade of lines and stubs. A generic

form for the sl(X) of this network is desired since, as previously noted, the square

of its magnitude along the jil axis can be equated to a power transfer ratio. This

general form may be implied if one considers the following:

COMPOSITE STRUCTURE

" --- SU13STRUCTURE --- SUBSTRUC TUR]EiJ =

Figure 4 - Cascade Connection of Two Substructures

In Figure 4, D and E represent two networks connected in tandem. Let
[D] and [E] represent the respective scattering matrices of these networks. Then,

if [S] represents the scattering matrix of the composite network, it may be shown

that:
d12 (X) e1 Z(X) (1

S1 2 () = 1 - d (k) e (

The important aspect of equation 12 is the fact that s 1 2 (X) Involves the

product of dlz(X) and e1 2 (X) in the numerator and a rational denominator. If, then,

equation 12 is successively applied to a cascade of n equilength transmission lines,

having different characteristic impedances, the resultant form of sl((k)will,
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from equation 11, be: n

W ) (13)
12 Isnkn0 ,

where Pn () is a polynomial in X of order n, possessing no zeros in the right half
plane, and where IPnio)I > i(1 + QZ)n/zL In evolving equation 13, we have
restricted consideration to the specific case of 1 ohm normalizations. This approach

was adopted for reasons of simplicity and is intended merely to provide heuristic

justification for the statement of the generic forms. Equation 13 and subsequent

equations 18-20 are general in nature.

Having this general expression for the cascade, we must now determine the

manner in which the incorporation of stubs effects the resultant s 12 ,k) scattering
coefficient. Consider, as an example, the shunt short-circuited stub, of characteristic

impedance Zo , depicted in Figure 5.

Z in-4 Z

Figure 5 - Shunt Short-Circuited Stub

For this element,

tanhZp=ZX (14)in 0 p = Z0

Thus, the short-circuited stub, under the Richards transformation, becomes a k
inductor of inductance Z0 . (Likewise, an open-circuited stub transforms into a k
capcitor of capcitance Y0 = - ) Regarding the above shunt, short-circuited stub
as a two-port, we may write its normalized impedance matrix as:

[ZI = Z 0 (15)

where Z is assumed normalized.
0
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Its corresponding scattering matrix normalized to the number for the port at which

it is located is,if Z is presumed so normalized:

00[s] = I oX(16)

Thus, if equation 12 is now applied to the configuration of Figure 6, the

resulting s 1 2 (k) scattering coefficient will have the general form:*
n

W (l - X2 (17)

1l2{k) = Pn+ I k )

where Pn+ 1 (k ) is a~polynomial of order (n+ 1) in X, having no zeros in the right half

X-plane, and where IPn+ l(j")l > ljn(l + a2)n/2I

CASCADE OF n EGUILENGTH

Figure 6 - Cascade of Transmission Lines Augmented by a Shunt
Short-Circuited Stub

Hence, s 1 2 (X) in equation 17 has a zero (called a zero of transmissi6n) at

d.c. (i.e., X = 0), the frequency at which the shunt, short-circuited stub behaves as

a true short circuit. A similar expression as equation 17 would have been obtained

had the cascade been augmented by a series open-circuited stub, rather than the

shunt shorted stub; such an element would also introduce a single order d.c. zero

of transmission.
By arranging shunt short-circuited stubs and series open-circuited stubs in

a highpass ladder configuration, one may achieve multiple-order d.c. zeros of

transmission. For a structure containing n cascaded transmission lines and possess-

ing an rth order d.c. zero of transmission:
n

X r ( 2 -

()

a12(k) =Pn+r(k) (18)

In a similar fashion, one may incorporate series short-circuited stubs and

shunt open-circuited stubs to produce a multiple order zero of transmission at the

quarter-wave frequency. For an equalizer containing n cascaded transmission lines
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and a qth order quarter-wave zero of transmission:
n

12M (19)

th
Finally, for the most general case of n cascaded lines, an r order d.c.

th
zero of transmission and a q quarter-wave zero of transmission:

n

a ( (0)
12( -P+rn+ r+q(X

These are the generic forms for whose magnitude squared, along the j9

axis, equiripple specification is desired.
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II. DEVELOPMENT OF THE EQUIRIPPLE FUNCTION

A. D.C. Zero of Transmission

The initial case to be considered is that of an equalizer containing n cascaded

transmission lines and an r th order d. c. zero of transmission. For convenience,

however, the particular case of r = 1 will first be treated; the generalization to an

arbitrary positive integral r will then subsequently be made. Thus, from equation 18

with r = 1, the general form to be considered is:
n

M (l - X ) (21)12 n+ 1

Therefore:

s12 (X) S12 (-X) _ ( (22)Pn+ 1~k Z )

2 2where Pn+ 1 (X) now denotes a polynomial of order n+ 1 in X

Along the jQ axis, then:

Is z+ 1))Z n 0 < (2l3)ju)l2< 1 (23)
ZOP (O2 )- &

From equation 9b:
0 = tan I1 (24a)

For convenience, let:

0 = PI (24b)

Then, substituting into equation 23:

tan 2 0 secZn 0 sin 2  (

Pn+ I(tan 2 9) Pn+ I(cos )(

Let, now:

x = a cos 9 (26a)

for which: s 2

sint 9e1 -cost g=ea t- tauny

where a is an arbitrary positive constant greater than unity.
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Substituting equation 26 in 25.

2 2

a - 2
n + (xr) G n+ l(X)

2L 2 x (27)
2 l + x 2 ) + lx 2 ) (7

S-x +H+n+ n+
CL X

a - X

The motivation for the preceding manipulations becomes more evident if one

considers again the basic end to be achieved. A Tchebycheff-type shape is desired

for islz 2 , as this parameter can be equated to a power transfer ratio. That is, we

seek an analytic expression describing a shape having the basic form of Figure 7.

I \21+0 ..., %to 12., J.0
d.. WAVE FREO. WAVE FRO

Figure 7 - Desired Tchebycheff-type Shape

The problem thus becomes, noting equation 27, that of specifying

Hn + 1 (x2 )jA2 - x2 ) in such a fashion that it oscillates between finite bounds over a

given interval and then increases monotonically outside of this interval. The single

order d.c. zero of transmission necessitates that this function have poles at

x t a. These points correspond to d.c. and the half-wave frequency.
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If a function exhibiting this behavior can be found, then the multiplication
2 2

of it by a constant, call it c (where e < < 1), when inserted into 27 will generate

the basic shape of Figure 7. That is, £2 - 2 will slightly perturb

181212 in the interval wherein the function oscillates between fixed bounds; in the

region where e 2 Hn+ (x2 )/a2 - x2 monotonically increases, eventually becoming

infinite at x = +- a, 1si2 2 will monotonically decrease, becoming zero at x = - .

The boundedness constraint, 0 < s 1 2 12 < 1, when imposed upon equation

27 requires that Hn + I (x2 )/c 2 - x remain non-negative in the entire real frequency

domain corresponding to -L < x < a which in turn demands that the function oscillate

between finite positive bounds. This latter constraint, however, is not stringent;

the form of equation 27 may be remanipulated in such a fashion as to accommodate

any finite bounds of oscillation and still satisfy the condition, 0 < Is2 12 < 1. In
2 2 _ 2

the region of monotonic variation, however, Hn+ I(X2 )/a - x must be a positive

increasing function.

A further restriction upon HN 2), which as yet has not been explicitly
n + 1 2 hc

stated, is the fact that it must be a rational function of x with real coefficients.

This demand becomes obvious if one recalls that in the generic form of I 12(JG)12

Pn+ I (a ) was constrained to be a polynomial of order n + 1 in Q

Thus, if for simplicity of notation, we define F(x 2 ) = Hn + Ox2)/L -x 2 , we

may summarize the requisite properties of F(x2 ) as:
a) F(x 2 ) must possess poles at x = t

b) F(x ) must oscillate between finite bounds over a given portion of the total

interval -a < x< +a.
2

c) F(x ) must be a positive, monotonically increasing function outside of the

interval of oscillation.
2 2d) F(x ) must be a rational function of x , whose numerator is a polynomial

of order n + I in x2 and whose denominator is the (a 2 - x ) factor.

We are seeking, basically, a modified Tchebycheff function. The substitution,

x = a cos S, with a stipulated as a positive constant > 1, was made in view of this

fact and with a foreknowledge of the behavior of ordinary Tchebycheff polynomials.

These polynomials, defined by:

T (x) = cos(n cos - I X) (28)

oscillate in amplitude between - 1 for -1 < x < + 1 and behave monotonically outside

this interval. We must incorporate this type of behavior into the modified Tchebycheff

function. Thus the parameter a was prescribed to establish the width of the passband
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relative to the total band of interest. The total band, as shown in Figure 7, extends

from 0 = 0 to = i, i.e., from x= +L tox = -a. The edges of the. passbandare

at 00 = Cos + i.e. , at x t 1. Hence, by increasing or decreasing a, subject
to the aforementioned constraint, one may respectively decrease or increase the

relative width of the passband.

Consider as a possible specification of F(x ), the function:

F(x ) = cos(2n* + 6)

where

=cos x = co- 1 (C cos 0) (29)

6 = cos- I (
a -X

From the trigonometric identities:

cos(a + b) = cos a cos b -sin a sin b (30)

sin a = coo a

it becomes evident that F(x ) will have the general form:

2 f~ 2  (C v22 fx2 
F(x ) = cosZz. '--'-z -sin Znz. ' (31)

a -X a -X

Thus, the function will possess the (a2 - x ) denominator factor, i.e.,

poles at x = + a.

The function we desire- must be a function of the variable x , noting

equation 27. The polynomials defined by equation 28 do not, for odd n, satisfy this

demand. However,

T 2 n(x) = cos(2n cos 1 x) = cos(2n*) = cos(n E2]) = Tn(2 x -2 1) (32)

does satisfy this requirement of evenness. Thus, 2n+, rather than*, was incorporat-

ed into the argument of equation 29.

The development of this general Tchebycheff-type function, as well as the

proper analytic form for 6, was accomplished by Sharpe and Helman. The

specification they formulated is:



13

6 = coo- 1  ( - X1 + " L ' (33a)
X - C

or

Cos 6 L (33b)
X d z -X

Consider Figure 8, wherein coo 6 (for a = 2.00) and coo 24 are both plotted

versus x in the interval -1 < x < 1, i.e., the passband. Since both functions are

bounded in magnitude by unity in this interval, the arguments 6 and Z+ remain real.

Furthermore, the similar behavior of the functions implies that the angles 2 + and 6

must vary in like fashion across this interval.

It is a well-established property of Tchebycheff polynomials, though, that

the argument + traverses through w radians as x varies from +I to -I. Thus, 24

will cover 2w radians; 6, then, should likewise go through 2r radians. The manner

in which these two angles vary relative to each other, however, has not, as yet,

been established. That is, although they both cover 2w radians in the passband,

no indication has been given as to whether their representative phasors would rotate

in a similar or opposite directions.

To establish this point, consider the definition:

sin4 = sin(cos " - x) = (34)

By convention, the positive sign is associated with the square root. This

fixes the interval 0< x < I as corresponding to > * > 0 or w > 24> 0.

Likewise, the interval -I < x < 0 corresponds w > 4> or Zw > 24> tw. Hence,

x 0 for -1 < x < (35)

since

d In

If, then, we wish 6 to vary in a similar manner as 2 +, we must select sin 6

in such a manner that the first and second quadrants of 6 correspond to 0 < x < I

and the third and fourth to -I < x < 0. To accomplish this, we take:



o)-0--0---COS8 vs x

b)" C0S 20 vs x
a a 2.00

1.0

0.8

I ~0.6 -- -

I 0.4 I

I I.o.
0.2I

II

-. 0 -0.8 0.6 -0.4 -0.2 0 0.2 0.4 0.6/10.8 1.0

i -0.21

I -0.4

I - -0.6-I

- - -0.8 -- -

I

- i - - - - n

Fig. 8 a) coo 6vs. X

b) cos 2 +,. x

MRI-18853
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sin 6 =-/ coz 6  1- 2 ) (36)Z 2
G -x

2 . 2
where the square root of this last expression is taken as positive. Since Z 2 > 0,

2L > 1, and x < 1 in the passband, sin 6 takes on the same sign as x; this, from the

above considerations, is the condition desired. Thus,

< 0 for -1 < x< + 1 (37)

(a -x) sin 6

Figure 9 depicts the variation of 6 arid 2 + with x for a = 2.00.

Hence, the argument (2n+ + 6) ranges over (n+ 1) cycles of 2w in the

passband. Cos (2n4o + 6), therefore, repeats (n+ 1) times with 2(n+ 1) zeros and

[2(n+ 1) + 1] points of maximum deviation, i e., points where Icos (Zn + 6)1 1.

The effect of the angle 6 in the paseband is merely to add another ripple.

It is important for our purposes that this angle add and not detract from the total

argument; the stopband attenuation of Is 2 12 proves much steeper in the former

instance.

The important feature of this development is the fact that the basic

Tchebycheff property of oscillation between fixed bounds (i.e., - 1) over a subinterval

of the total band of interest is preserved. Thus, requirement (b) is established.

The passband behavior of a representative function is shown in Figure 10.

Up to this point, we have dealt solely with a single order d. c. zero of

transmission. This enabled is to consider the angle 6 as such, rather than multiples

of this angle. Had an m order d. c. zero of transmission been initially specified,

however, the counterpart to equation 27 would have been:

112= 1 HI ( ) (38)
H + (x)

1 +

For this form:

2 H (Mx)
F(x ) Z n Zm = cos(2n+ + m 6) (39)

(wL - x )

would be the requisite equiripple function.
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COS(44+B)
(a a 2.00)

1.00 __

I 0.501

-10 0-6 -p&- LOO

~I.00I .501.00

I/ I

I /I-

FOR a 2 .00
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Fig 10 cos (44o,+ 6) vs. x
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Consider the following expansion of (39):

cos(2n+ + m 6 ) = 1 [J(Zn + m 6) +.-J(Zn + m 6)=

7 [coso+Jsin)n (cos6+ jsin 6 )m + (coso -jsin) n  (cos 6 -jsin 6 ) M=

2x+ ) -n (:22-- l x + , x VX2 - c -)j _ 2,

(rZ z, 2 -1x 2 . Zcx _m ) ,)m

2(aZ - xZ)m (40)

In this form, the fact that (39) does possess the requisite (o, - x )m

denominator becomes explicit.

Likewise, the passband behavior of cos(2 n+ + m 6) would be qualitatively

similar to that of cos(Z n + + 6). The argument (Z n + + m 6) would range over (n+ m)

cycles of 2w, the function repeating (n+m) times with Z(n+m) zeros and E2(n+m)+ i
points of maximum deviation.

The remaining properties which must be established are the positive,

monotonic stopband variation and the constraint of rationality. These properties will

be verified for the general case.

Consider again the function:

cos(-n4o + m6)

where

Z* = Cox- (2x - 1)

6coo "  coos~ (41a)

For I < lxI < C.

(Zx - 1) > I (41b)

g2>
glx ) • 1
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Therefore, in this interval,

= cos " (2x - 1) = j cosh " I (2x - 1) (41c)

6 cos g(x) j cosh I g(x 2 )

and

con(2 + 6)coo i[n coshlI (2x _1) + mcosh'I (g (x 2)

-cash {n cosh 1 (2 x2  1) + m cosh 1 (g (x))(1

As one proceeds from the pasaband edges (i.e., Ixi = 1) to the edges of the

useful band (Ixi = a), the parameters of (41b) increase monotonically, g(x ) approach-

ing infinity as Ixi approaches a. Hence the Iunction (41d) is also a positive,

monotonically increasing function in this interval; it varies from 1 to 00 as IxI varies

from I to a. Thus the desired behavior is achieved. Note that, from (41d), one

may readily deduce the primed nature of the polynomial numerator with respect to
2 2mthe factor, (a - x ) .

The necessary general rationality of cos(2 n + + m 6) may be explicitly shown

if one considers the following expansion:

cos(2n + m6) = cos 2n cosm6 - sin 2n+ sinm6 (42a)

Again, for simplicity of notation, let:

cos 6 = (2 .i2ix 2  = g(X2  (42b)
a -X

Then, noting (42a)

2 2cos(2n+ + m 6) = T2 n(x) TM(g(x2))- U2 n(X) Um(g(x )) (42c)

where

Tk(.) = cos(k cos -
(42d)

Uk() sin(k cos o )

Using, now, several established functional relations:

Um(glx ) = 1 (g(x2) ) Qm - IW(gx2)) (42e)
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where ~ [m~.")i - Ia"- + -mS
and

Thus, noting (42b) and (36) in conjunction with (42e)

a -x

(42g)
However, 

- 1-x U2n(x) T 2n + I (x) - x TZn(x) (42h)

Thus.

cos(2n+ + m 6) -T2 n(X) T (S(X )) - U~n(x) Ur(g(x 2) =

2 2 axL T  2
=T 2 (W T( )) + C (T2n+ (x) " xT 2 n(x)) QM - l( ( 2))

(421)
Since

x T +(X) W T 2. +(x) + T ()

(42j)=1 x2- x2

Tn+1 (2 1)+ + Tn(2 1)

.cos(Zn+ + m 8) T n(Zx2 - 1) TM(g(x2o)+

+ I TlZx 2- 1) - xzT lZ12 . l)]Qm .1 lglx)) (22k)

2 2From equation 42b, one notes that g(x ) is a rational function of x . Since

equation 42k involves rational functions of 12 and g(x ), it is itself a rational function

of 12.

Having established the previously-outlined requisite properties, we may

now incorporate this general Tchebycheff function into the equiripple specification
ofJsl J . From Figure 10, it i evident that the function oscillates between t in

the passband. Therefore, the form of equation 38 must be slightly adjusted to
insu~e 0 < 1121 <1. A proper form, for n cascaded lines and an mth order
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d.c. zero of transmission, is, then:

1212 = 1 -(43)

I + C cos(Zn+ + m 6)

An alternate form may be obtained by defining:

6 (44a)

for which: 2

cos = +coo6 =x CL x- (44b)

and
sin = a l . (44c)

Employing this function, we may specify Is12I' an:

.2= z 1 (45)
'121 +C cos Z(n +m3)

Note that since:

coo (n+ + rp) =+ cos(2n* + Zmo)= + cos(Zn+ + m6), (46)

all prior discussions concerning the necessary properties of the equiripple function

are equally satisfied.

B. Quarter-Wave Frequency Zeros of Transmission

The general Tchebycheff function will now be applied to the case of quarter.

wave frequency (i.e., 0 = j-) zeros of transmission. For a network comprised ofT th
n cascaded lines and possessing, in addition, a q order quarter-wave zero of

transmission i.e., short circuited stubs in series, open circuited stubs in shunt,

(from eq. 19): n

= (k) x) (47)PZ"n + ql(M

Therefore:

1l2k 1I2 - k  P n+q (XZ)

2 2
with P. ( q ) a polynomial of order n+q in X.
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Thus, along the JO axis:

0 ) o < a l0)Ia< 1 (49)
P (4)n+q

Noting that: Q = tan I f tan 0,

1.1 c= cC n 0 (50a)
Pn +q(tanZ 0)

Cos Zn 9 Sb
COS S(50b)

@inZn+Zq, sinZn+Zq'e sin 2 0
an+qcZn+Zq, +an+q-1 oZn+Zq-Z+ +a I + a0

1

sin2n+Zqe sin Zn+Zq-Z e  2 Zn- an
an+q nZqo q + an+q-i +...+a I sin o coso +as 6coanqcoo qo cos~'o  -

(SOc)

Note that equation (50c) involves only even powers of the trigonometric quantities.

Since sin2 0 = 1 - coo 0, one may further manipulate equation (50c) into the form:

is12 l2  1 2 (51)

I+ , •G +q(sin 2 0)
2Cos Z
q 9 nq

with no loss of generality. G n+q(sin2 9) is a polynomial of order n+q in sin2 0.

Thus, if the transfornation:

x X o sin 0 (52a)

is made, for which,

coo =1 -sin .2 0= (2

equation 51 will assume the form:

1q (3)

( a xz)q



23

This form is identical to that of equation (38). Therefore, if Is1212 is

specified as:

2, I'lz' z 1 - 2

Is 12 1 -c P (54)
I + C coo(2n+b + q 6)

where x a a sin 0, an equiripple shape is attained. Note that this is a low pass

characteristic; the d.c. point corresponds to x = o, the passband. edge to x = + 1,

and the quarter-wave frequency to x = +L. Figure 11 shows a generic shape of this

type.

Is81'

s.0 .a +J

Figure 11 - Equiripple Shape for the Case of a Quarter-Wave Zero
of Transmission

C. Zeros of Transmission at D.C. and the Quarter-Wave Frequency

The network structure to be herein considered is one which possesses zeros

of transmission at both d. c. and the quarter -wave frequency (i. e., at U = 0 and

Q z ao, respectively). No equiripple specification technique has been devised to

handle the most general case of this class; however, we may accommodate the case

wherein the pertinent network is comprised of an even number of cascaded lines and

equal order zeros of transmission at d.c. and the quarter-wave frequency. Imposing

these restrictions upon equation (20), we have, for n = 2m cascaded lines and an rth

order zero at d.c. and the quarter-wave:

x r (1 2 z) m  (55)12O' = M P + 2r (X)
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Along the Jf axis, then:

= ,2r(I 0 < I*12 1in (56)P 2m + Zr t )  -

Since t tan = tan 0:

8• 1 2 1 = tan r  soc 4 m 0 (57a)
Pzm + 2 r(tan 0)

2r
sin 0

4m+Zrcoo

sin4m+4r 0 sin 4m + 4 r  0 sin 0
4m+4r Zm+2r-I cos4m4r-Z 0 

+ "'" 0I +cos 0cor coo 0
(57b)

1

sin4m+Zr e Zr -in
4m+Zr-Z e cog4m+Zr "0 coo 4m+ 2 r e

2 Zr Zr '+2m+2r-I-- T'"r- 1+a-Z0

coo 0 cos sin 0 sin 0

(57c)

Noting that equation (57c) involves only even powers of the trigonometric functions,

we may rewrite it as:

Is 612 1 (58)

GZm + Zr(sin. e)

(coo z 0 sinz 0) r

with no loss of generality; GZm + 2 r(sin 6) is a polynomial of order Zm + Zr in

sin 0.

Let us now make the transformation:

x =a cos20 (59)

for which,
x2

-- =cos8 os2  l 1 2-Zsin 2. (59b)

Thus,

cos 0 = (a + x)

(60)
2 1

sin (L-X
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Equation (60). when introduced into (58), will yield a form:

H122 1 (61)
1 2m+2

(CL -x )r

However, we require symmetric behavior about x =o; I s12 must be > 0 for
I1< lxI < a. Hence, lot us restrict H Zm + Zr (x) to be an even function of x; that is,

we set the coefficients of all odd powers equal to zero. Then,

1 (62)

+H m+ r (x)

(a Z -)r

This form is identical to that of equations (3,8) and (53). Thus, by specifying.-

1.1 i+ C cos(Zm + r6) ,(3

we realize the desired equiripple shape.

Figure 12 depicts a generic shape of this class.

#so go fws'f e f ucr' eqS
Figure 13 - Equiripple Shape for the Case of D.C. and Quarter-Wave

Frequency Zeros of Transmission

Ex9amples, wherein networks realizing these Tchebycheff shapes are

synthesized, will be-given in subsequent sections of the text. The shunt, short-

circuited stub band pass filter, treated in the following segment, will utilize the
transformation of Section U A; that of Section II B will be employed in the tunnel
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diode amplifier design. Appendix A contains an elementary example of a synthesis,

realizing a network of the Section IIC type.

An integral part of these synthesis procedures is the factorization of

Sll(k) alI(-X) = 1 - s 1 2 (X) sl1(-k), as outlined in reference 1. Thus, it would be

highly desirable to have an explicit factorization of s 1 1 (X) SlI(-X). This factorization,

for the general case, has not been achieved. However, for the specific case of

Section IIA or Section IIB wherein the number of lines and the order of the zero of

transmission are equal (i.e., where cosn(Zi + n6) is encountered), the roots may

be found in a manner similar to that employed with regular Tchebycheff polynomials.

This factorization is outlined in Appendix B.
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IU1. THE SINGLE-STUB BANDPASS FILTER

A. Determination of Load Resistance and Stub Characteristic Admittance

The network to be considered in this section is, as shown in Figure 13, a

cascade of transmission lines shunted by a short-circuited stub. The problem to be

treated is the ajriori determination of the load resistance and stub characteristic

admittance, so that the structure can be designed to operate between prescribed

terminations.

Figure 13 -Shunt, Short-Circuited Stub, Bandpass Filter

For a network comprised solely of a cascade of equilength transmission

lines operating between a resistive generator and a resistive load, the determination

of the load resistance is straightforward. The transparency of the lines at d. c.

(0 = 0) enables one to calculate the load termination RL from the relatonk

0 = R() R (64)
L g

That is, since si1(0) is real and since Is,1 12 the load resistance may
be easily determined from a knowledge of the insertion gain (i.e., 1.,122) shape

The insertion of the shunt, shorted stub into the equalizer, as is shown in

Figure 13, necessitates that aI1(0) = -I regardless of the termination. One loses

the d.c. point access to the load.

The problem thus becomes, given the insertion gain shape (i.e., equation

(43) or (45)) and a foreknowledge of the desired physical position of the stub relative

to the generator and load, the determination in an a priori fashion of the values of

load resistance and stub characteristic admittance which the synthesis will yield.

We shall obtain these parameters by considering the representation of

Figure 14,
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Yin WM

Figure 14 - Bandpass Filter Schematic

where Y(X represents the unnormalized input admittance of a cascade of n equi-

length lossie. a transmission lines terminated in conductanceY

Y = stub characteristic admittance.

Y.i (X) =unnormalized input admittance of the stub-shunted cascade. That is,

y
y in W + Y (X) (65)

Normalizing this admittance to Y R f 1

9 .9

Yin g g

in- X R Y( , (66)

for which:
1 R Y.

1 +R Y.
g in

if we constrain port 2 of the equalizer to be normalized to the load.

.The first relation that will be derived is the familiar Fano-Bode integral

restriction.' 11 Substituting equation (65) into (67):

1 - RY X

1(00 = .. y-lRY (68)

1 R YW 1 .- -(1 + R Y(X)
sgs

Note from the above definition that Y(X) is a regular function in the neighborhood of

the origin; that is, its series expansion about this point would be of the form:

g 2
Y = YL +al + a .) . (69)
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Hence, in the neighborhood of the origin sU1(X) is a ratio of two quantities differing

slightly from unity. Let us expand about the origin:

8g M

1 2
since = 1 + C + E +

Thus: 0o1 -- 2 n  ( 1

b n (XI) (71)
g T n=2

and

+n( I '2 + n  (72)
11 g n=2

or
0o1 n 1 1 1c X n  (73)

'I r I+ C

117 XT gs 2

Consider the integration of equation (73) about the contour shown in Figure 15.

R I

Co

-R

• Figure 15 - Path of Contour Integration
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Let us now constrain - in ( ) to be analytic within and on the closed

contour of Figure 15. Then, by the Cauchy-Goursat theorem:

In (1 ) dk=0 (74)

The integrand vanishes on co, i.e.,

1r i I In(-LI -)dX =0R" Cao f cCO X-2 In 11 k -

Furthermore:

I In 1 )dX=+jw r2 (75)

c 0 X1gs

since the integration about the pole at the origin is taken in the "positive-phase".,

i.e., counterclockwise, direction. Thus,

l In( 8 )dX Jf -ln f_(j U) )dQ+j + .
c -C o+r Q -

+ j W (A-) =0 (76a)
gs

or, in the limit as r--0,

.0- 1 nl ) )dQ + f+ In (ll - )d = 7 (76b)

Let 1(T} be represented as:

1 = 1 ej(0) (77)
s =J Is- = 3 M 7)

Then:
01 1 1n 1 d= 2 (

f---1n 1 1 (j ) d + T I 7 W 1 R gd

since the integral of the phase component is zero; every point on the jO axis has its

corresponding conjugate and from (10), s l(x*) =- (k).
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Thus,2

Tu i 1 di=l 2W (79)/ in gs
0f J gs

This gives us one of the required relations. To obtain the second, let us

consider again Figure 14. From equation (67):

Isll(Ji2) 2= 1- sl(ji ) I = 1" R +" (Rg) . I 
-

R g Y i n ( -j " )  (80a)

or: I + JR gY in(j0) - 2 Re RgYin(J 9)

1- s12 (jz) 12 = 1 + R i R (80b)

1 + IRgYin(J1) + 2 Re RgYin(O)

Rearranging equation (80b):

2 aI 4Re IRgYin(J) ( ( )

isi(Jfl)I 2  -(I + 2 Re RgYin(JL ) ) (80c)

From equation (66);
R Y

RgYin 0 0) + RY (g Y(j ) (81)

Hence:

Re IRgYin(Jfi) =Re IRgY(j 0)I (82)

since R and Y are real quantities (stub is lossleus).
g s

Also:

JRgyi(j Q)I 12 =R2( a 'i' (-j 13 - 2 . )+M m (83)

Thus, noting equation (69) in conjunction with (82) and (83):

1 2=
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since:

[Q (1 + 2 Re R g Yn(i Q) )]0=0 2(( + 2 Re R 8 () 9 0)J0= 0 84b),

Let us transform equation (84a) to the x-domain. From Section II-A, x = Ccos e.
Thus: 2 2

~2 t 2  2 2XZ=tan 2 0 = ---

x

We shall adopt, as our equiripple form, that of equation (45). Let:

2 2

Is 1 12- K -- K, (86)I +c cos (n +p) t G n+(x 2

TI+
z -X

where 0 < K2 << I.

From equation (69):

[Re (RgY(j )) ] Rg YL (87)

Thus, from equation (84a):

2 Z 4Re (R y(j10)) 1cf 2 ( zL 1siYj);Z j= 4 RgYL a(1lC) . (88)

Thereforie, using equation (79) in conjunction with (88):

R, f 0 - In 4 z d Q

and (89)

a n(I - K 0 a (J) d
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These relations pertain to the case wherein the stub shunts the generator.

Instances may arise in which the desired orientation has the stub shunting the load,

as is shown in Figure 16b. For this case, in view of reciprocity, we may first

treat the case of Figure 16a. Proceeding in an analogous fashion from port 2,

we may predetermine the pertinent parameters by the relations:

2w

R =1 In I d 0
RL [J TI d J

and (90)

RL EZ G,+r ( a ' )  cI
Rg 4- Z

7R C\a(I - K) n d2 2 (i)I I

Because of reciprocity, 1S1 2 (jl) 12 jsZ(ja) 12. Thus, if we now move

the ideal generator E to port I to form the configuration of Figure 16b, the powerg

transfer ratio will not change; the network of 16a, with the power measured across

R g, has a transducer power gain identical to that of 16b, wherein power is measured

across RL.

RqC=*- - .....

R- = YSrm (2) E

(Ioi

Eg

(b)

Figure 16 - Bandpass Filter with Stub Shunting Load

A necessary condition for the validity of equation (74) was the analyticity

of the Fano integrand within the closed contour of Figure 15. This constraint, which

permitted the derivation of equation (79), thus restricts the validity of equations(89)

and (90) . These relations will predict the desired parameters for the case of

Figure 13 or Figure 16 only if, in the ensuing synthesis factorization, Sl(k) or

s (k ) , respectively, is chosen such that it possesses no zeros in the right half plane.
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The constant K2 was introduced in equation (86) to serve a dual purpose.

For a given a, c2 and n, it may be used to vary the stub and load immittances.

Secondly, in lowering the passband ripple peaks of 1212 to below unity, the para-2

meter K prevents j 0-axiszeros of a1 1 (k) or s22(W and thus serves to prevent jil-

axis singularities of the Fano integrand; equation (74) demands that the integrand

be analytic on the contour.

The lack of an explicit analytic evaluation of the Fano integral for the gain

functions used here restricts this determination of parameters to a semi-graphical

procedure. Its primary advantage lies in the fact that design curves may be tabulated

for cases of interest.

To demonstrate how these design curves (e.g., Ys v.s. K and RL v.s. 9 )

would be computed, a relatively simple example will now be offered. Let the pertinent

design parameters be specified as:

a) n~l

b) a = 1.50

c) E = 0.01

d) the shorted stub is to shunt the generator

As a reasonable designation for K , let K = 0. 04. Then:

1 - 0.04 - 0.96
2 + 0.01 cos(+) I + 0. 0 1 (+cos(2*+6)) (91)

2
2

which, for a = 2.25, becomes:

.1,512 12 .0.96 (92)1 + 0.005 1 + 1 3 . 7082x 4 
- 14. 7082x 2 + 2 " 5

l+.05[13 2. 25 - x ]
From equation (86):

2 .Gn + l 
( 2 ) = 0l.01G 2 (2.25) = 0. 005 Z. 25 - x2 + 13. 7082x 4 -14.7082x 2 +

+ 2.2 = 0. 19277 (93)+ 1 2. x=2.2 5

To evaluate the Fano integral, we initially formulate 1 1 The

I8 ll 1-2 
The
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integration is then separated into two phases. Noting that,

2 2 2  2. 2x

a2=tan O= x _ 2. 25x 2 (94a)
x x

we determine the lower passband edge as:
1

Q = 1. 118 (94b)

Figure 17 depicts the stopband variation of the Fano integrand. By numerical

integration, the integral was evaluated to be:

1.118 f-- In 1 d9l = 6.82 (95)o 91 In

The integration was divided into two parts because, in the passband,

I/IS11 2 ripples about a mean value, call it I/Iso12. Since the logarithm of a

function varies less than the function itself:

1.118 I- . 8 f In 1 dO= fj- 1 In( 6 )d =2.78
1.1 I1 (i0)If 1. 118 Iso 1 1.118 (6

Thus, from equation (89) (for R = I ohm)g

Ys = 6.2832 = 0.654mho

(97)

R (0. 19277) (9.60) 2 = 0. 833 ohmL ( 9. 8697)( Z. Z5) ( U. 96)

The actual synthesis, performed to verify these results, yielded the

following:

From equations (92) and (94a):

I~llJalIz = . lZ~ t 4  0. 04171731 2 + . 1927716 18
2.27 0)012 = 0. 1. 41172 +0. (98)
2. 27250 0 + 2. 1182827 Q +O. 1927716
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15.00 - - - - -

10.00 -_ _ _ _ - -

5.00 __ __ ____

AREA :6.82

0 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 17 Stopband Variation of Fano Integrand

MRI - 18858
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Se.cting left-hand plane zeros and noting that a I I(0) = -1:

= -0. 222498 ),2 - 0.333571) - 0.291252 (99)

X Z + 1.230708X'+ 0.291252

for which the corresponding input admittance is:

Y () = 1.222498X 2 + 1. 564279X + 0. 582504 (100)
in 0.777502) 2 + 0. 897137)

The resulting network is shown in Figure 18:

R ISY0.649 MHO 00:1.363 MMO RL 0.846 OHM

Figure 18 - Synthesized One-line Bandpass Filter

Note that in cases where a single design for a specific RL is required, one

must use a cut and try procedure in adjusting the shape parameters, until the

integration yields the desired value.

A word of explanation is in order concerning the forms of equations (89) and

(90). The Fano integral is specified in the 0-domain whereas the other parameters

are evaluated in the x-domain. In lieu of the fact that 18112 is initially specified

as a function of x, one might question the merit of an x-to-91 transformation for the

integrand.

The motivation for this transformation lies in the fact that the integrand

is composed of the product of. two terms which respectively increase and decrease

as one proceeds to the edge of the useful band. Thus, a stopband maximum occurs.

If, as in the example, the stopband attenuation of as12 2 is not relatively steep,

this peak will occur in the immediate vicinity of the band edge (i. e., il = 0). In

this region:

[ l +) (101)

is correspondingly small. Hence, the stopband peak in the x-domain becomes

accordingly greater and numerical integration is, thus, more difficult.
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For equalizers comprised of greater numbers of lines, the stopband

attenuation of I 12 becomes greater and the stopband peak shifts inward from

the band edge. In these cases, choice of domain is relatively academic.

B. Partial Residue Technique for the Adjustment of the Load Immittance

In the preceding section, the use of the Fano integral necessitated a definite

physical positioning of the shunt short-circuited stub relative to the generator or

load; the stub had to be positioned distinct from the cascade if any useful information

was to be extracted. This orientation, however, is not the most general.

The shunt s.c. stub introduces a d.c. zero of transmission. Since this

zero occurs at the frequency at which the lines become transparent, it becomes

evident that equation (17) is the form for any positioning of the shunt s.c. stub.

The d.c. input immittance will be that of a short circuit, irrespective of the stub

location. Moreover, since the parallel combination of an arbitrary number of these

stubs (X inductors) will still produce a single order d.c. zero of transmission

(i.e. , act as a single equivalent shunt inductance), equation (17) does not constrain

the resulting equalizer to be of canonic form (i.e., minimum number of elements).

In the synthesis of these networks, this lack of uniqueness carries over to

the input immittance expression. Thus, for a given input immittance function, the

sequence of synthesis is not fixed. One may, for such a function, extract a total

residue, a partial residue or a transmission line (i.e., delay the residue extraction

to a later stage in the cascade synthesis). In each instance, the load termination

which is ultimately realized will be different.

This fact affords one an added degree of freedom in load realization. If

this change in load immittance can be predicted, the delayal of stub extraction will
provide a stage-by-stage procedure whereby the load may be adjusted. That is, if

this variation is monotonic, one may in certain cases converge upon the desired

value of load immittance.

Consider Figure 19, wherein the alternatives at one's disposal are shown.

In this development, capital letters will be used to designate unnormalized admit-

tances; lower case letters will indicate normalized ones.
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A

-~k -r -X -O Y (h)

(a)) O 1k

Figure 19 -Alternative Synthesis Procedurei

In Figure 19:

Y(k) =input admittance physically realizable an a cascade of n-1 lsisles equi-

length transmission lines shunted by a lossless a. c. stub of commensurate length

and terminated by a pure conductance.

K, Kit K' = stub characteristic admittances.

Y , Y' line characteristic admittances.
00

Yr W. I Y (k), Yr'4, YO'), Y"(X) = input admittances whose relations to Y~k) and the

other parameters is indicated .in the diagrams.

Y ' = terminating conductances

The object of the following derivation will be to obtain an expression for

Y1 in terms of Yand other quantities which can be readily determined at the Ye.)

input stage.

To begin this developmient, we shall use the transmission line relation:

Yr~k =-y = -(1 OZa)
0 Y 0+ X i(k)

or rearranging ,

o r 0
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For n-I lines and the shunt s.c. stub:
na n n k-iK ck) *
V~ a+ k % Xy(k) = k=o n K + = IK+ rk

n = + n " r
'V1 b XP  p-Ip~l p  p

where a
K 0 (103)

Let us now designate

K K I + Kr  where 0 < Kr - K (104)

Then:
11 k- n K ko ln 7 dk k

KI( +Kr K+' c " I KI k _o .+ Y() .(105a)
YX) +- -+ _"

+ "

P= bI bp p
p!J ~=1

where:

n n

p=l KrbPX 1 + Z ckk ko dkkk (105b)

From equation (105a):

r 1) n (106a)
•0 r n B

L1p1 P

where:

nn
D-kod k  and B = Z (106b)

That is, from equation (104) and the definition of Y(k), Y'(k) is similarly

realisable as a cascade of n-I lines, shunted by a s.c. stub and terminated by a

conductance. Thus, from (002b):
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D ldkkk

Pb-XPB 1: dk k

S dk D B T dkk D T b Xp
p

P

Dbn n+ l + (Dbn  -B d n) n + +(Db -Bd 2 )x 2 +(-BdI)X+(-Bd o )kn + I + B n  - n ) k
n .Db....

Ed d -Db ..... +(BdI -Db 2 )X2 +(Bd ° -Dbl)X

(107)

A necessary consequence of the realizability of Yr(X) is the fact that:

Y' (1) + Y' (-I) = 0 (108)r r

Noting equation (102b), this, in turn, demands that both numerator and denominator
2of equation (107) be reducible by the factor (I - X ). Let the reduced form of y'(X)

be represented as:

(X) =-e n-xi + e..... 2 + eIX + e 0 (109)

n-l fX f1
fn n l  + ...... + f 2 x + flIk

Let now both numerator and denominator of equation (109) be multiplied by

the factor ( I- A) and the resulting coefficients be associated with those of (107).

The ensuing pertinent relations are:

0 =-B d0  f 1 B do - Db I

eI =-B d f2  B d - Db 2

(110)
e2 - eo =(Db I - B d2)

or
e2 = Db 1 - Bd 2 - B d0

Thus:
1en'n .+ +eZx2 +e X+e k' g xn- + g'

k n-I + + f 2
)- + n-2

yn-i 1 'n-2~+
f -Ix .... . f2 fIxfn-I X . ..... + f 2 k  +  flI

k'
=7+y "(k) (111 )
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From (110) and (111):

r -Bd
k= L' () r =0 = e°"Bd-D ()

Also: -B d
o ) (I 12b)

go e elf k = B d l ' (B d 1 " v b 2 ) ( W-o-D

and go B D(bld- d0b2) (llZc)

S (0) "I (B do bl)

Unnormalizing :-Dd

K' Y1' k' D k' 0 (113)r o r Bd o -D

and DZ ( dobg)
D(bid o

L oYL = (Bd Dbl)Z

From equation (105b), at) = 1:

Kr bp + 2: ck = dk

or
K B + C = D (I14a)
r

Also:
d =K b
o r1

(1 14b)

d = c I + K r b 2

Substituting equations (114) into (113):

Kr = K + K B Brl

and (115)

1L c (1 +Kr B

From equation (103):
: ck CYo = Y r( 1) =  B = ff

o p
and c(116)

L r 0
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Thus:

K' = K(l + Kr Zo )rra

and
y0 YL2 +K r Zo ) .  (117)

Al so:

Y' o ( 1 + K r Zo )

Since Kr and Zo , representing immittances, are inherently positive,

equation (117) indicates that by delaying stub extraction to the next stage one

necessarily increases the value of load conductance ultimately realized. Note that

all pertinent parameters can be determined at the Y(k) input stage. At a given2

stage, any load conductance between the bounds YL and Y L ( I + K Z0 ) may be

realized by the proper specification of Kr .

These relations may then be used in a stage-by-stage load adjustment
procedure. For any given synthesis, the minimum value of load admittance is

realized by immediate total residue extraction; the maximum value is obtained by

delaying stub extraction until last. The inability to predict the characteristic

impedance of the succeeding line, however, prevents the predictions of the overall

bounds on the load.

In the preceding derivation, use was made of the coefficients e, eo, f2 p

and fI of equation (Ill). For the case where n > 3, these coefficients appear in

the form shown, and the prior general derivation applies. For the special case of

n = 2 (i.e., one line and the shunt s.c. stub), f. does not appear, and additional

algebraic manipulation is required to obtain the desired forms.

For n = 2: 2

V M 0 (118)r b2XZ + b X

for which:

Db 2 X3 + (Db 1 - Bd 2 )X2 + (-Bd) X + (-Bdo)
= 0(119)

Bd 2 k3 + (B d1 - Db 2 ) X + (Bd o -Db)X

In reduced form:
ytI(X) = e o
yfi (120)
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Multiplying numerator and denominator of (120) by (1 - X 2 ) and associating

coefficients:

eo = -Bdo = -(Db - Bd 2 ) f1 = (Bdo - Db) -Bd 2
(121)

e = -Bd = -Db 2  B d I - Db 2 =0

Thus: -Bd

r 0 as before.

However: L e, elf B d(B do -Dbl)

1 1 f fB 0 " Db

or• (122)

D -D(Bd 1d - Db d1 )YL - YL =
(Bd - Db 1 )

From equations (121), Bd 1 = Db2 . Therefore:

D2 (b1d1 - dob 2 )
(B do -Db 1 )z

which is the desired form, that of equation (113).

An elementary example will now be presented to demonstrate the technique.

Let the network of Figure Z0 be given.

Y( O 0I MO 0.01 MHO

Figure 20 - Given Network

From Figure Z0:

10 0. 0l + XS.01(123)



45

We desire now to obtain a network which will have the same input admittance

but a 1-mho termination. Consider:

Y= YL(1 + K, Zo)2 (117)

For the given example:

Y 0.01 mho
L

Z I ohmo

K =0 mho.

Subs tituting into (117) to determine the required K r , we find:

r

1 =0. 01 (1+ Kr 0) 2

or
K r = 9.00 (124)

Since 0 < 9 < 10, the desired network is physically realizable. From

(117), the parameters of the equivalent network may be predicted to be:

K I = K - K =1 mho

Y = I.10 = 10mho
0

(125)
K' = 9.1 0 = 90 mho

r

YL= (0.01)(100) = 1 mho

In the actual synthesis:

9-- + 0. 0l + X x + 0.1ox + 9
r0_() (126)

for which:
Y, = Y'(1)  10 mho

0 r = 0 mh

Thus:
x Y'(k) 3 2o r 0.10 +9x -O. lOx -9

x Y,() - Y' x - x

1 (0. lox + 9_ 9O'10=127)
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Unnormalizing:

K' = Y' k' (10)(9) =-90 mho
r o r

Y y' =y (10)(0. l0) 1 mhoYL = oYL

The resulting equivalent network is:

Y1X)- I HI0 MHO 90MH I MHO

IN MHOMH

Figure 21 - Equivalent Network

This partial residue technique has been offered in conjunction with the
material of Section III-A since, if one is willing to tolerate the disadvantages of

the manipulation (i. e., non-canonic equalizers with unpredictable stub positioning),

it appears possible to greatly expedite certain filter designs by avoiding the necessity

of numerical integration.

Let us suppose that, in the broadband matching of a specified resistance to
a given generator, one desires substantial stopband attenuation. This requirement

will necessitate an equalizer comprised of an appreciable number of cascaded lines.
Hence, the equiripple specification of Is12 2 will involve high-order functions;

numerical integration of the Fano integrand will become correspondingly tedious.

Note, however, that the constraint of rapid stopband attenuation will cause
a considerable portion of the area of the plotted Fano integrand to fall within the

passband. Thus, if we use the passband approximation of (96) and then approximate

the total integral by this value, we can obtain a reasonable lower bound on the value

of the total integral.

A lower bound on the integral yields, from (89), a lower bound on the load.

Therefore, let us determine a K2 such that the lower bound on the load equals the

specified load resistance. We can then be assured that, in the ensuing synthesis,

the load resistance obtained by immediate stub extraction will prove > the desired

load.
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Noting (117), however, the load resistance may then be decreased by

partial residue manipulation. The appreciable number of lines, necessitated by

the desired rapid stopband attenuation, provides a considerable number of stages

for this manipulation.

There are two obvious shortcomings to this proposed procedure. From

(89), the load is seen to vary as .the square of the integral. Thus, the above-

mentioned bound on the load will be relatively low. Secondly, the inability to pre-

dict the overall bounds of the partial residue adjustment prevents an absolute

assurance of desired load realization. Thus, this procedure affords one no

positive guarantee of success. Rather, it has been offered as a technique which,

when properly used, has a good probability of success and, in view of the work it

curtails, might therefore be of value.
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IV. TUNNEL DIODE AMPLIFIER DESIGN

The small-signal network equivalent circuit of the tunnel diode is shown in

Figure 22. This model, which is valid up to microwave frequencies, is composed

of lumped parameter elements. Thus any attempt to design a distributed parameter

amplifier encounters an initial difficulty; the network description of such a trans-

mission line-lumped reactance mixture would involve transcendental relations.

L

Z(j|-- Ct -R

Figure 22 - Equivalent Circuit of a Tunnel Diode (neglecting junction
spreading resistance)

To avoid this difficulty, we shall adopt the distributed parameter approxima-

tion of the diode, developed by L.I. Smilen? This model is shown in Figure 23.

A _Z ( iW} -4 Y2 -R

Figure 23 - Approximate Model for the Tunnel Diode (neglecting junction
spreading resistance)

Thus, the p-plane reactances of Figure 22 are approximated by X-plane

reactances in Figure 23. This model is to approximate the diode behavior over a

frequency band. From Figures 22 and 23'

2 2
fR RRY

Z(jw) - tan, r (Z 1 - ) (I28b)

22  2o w2 2 2iwf1+RY tan +R Y tan
2 2

0 0

*Equations (128) and (129) are taken directly from Smilen?
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where f represents the quarter-wave frequency.0

The imposition of the following constraints:

a) Real Z(O) Real Z(0)

At a given frequency fC (0 < fc < f ) (129a)

b) Real Z(j f) Real Z(j fC)

c) Imag Z(j fc= Imag Z(j fC)

necessitates that:

a) R R

f
b) Y = c C cot c (129b)

0

iT. f
c) Z1  w L cot - c

0

Using this approximation, we wish to design a tunnel diode reflection

amplifier. This type of configuration is shown in Figure 24:

- -, - I 1,
ZI

TNSMISSION LINEI

E9 L T EQUALIZER -Y

L OVERALL [SI STRUCTURE - _j
Figure 24 - Tunnel Diode Reflection Amplifier, with Diode Approximated

by Transmission Line Model

As is shown in the diagram, the stubs may be incorporated with the equalizer

to form a composite structure with resistive termination. This procedure is that
10developed by Smilen and Youla. In accord with their derivation, the overall scatter-

ing matrix [S] will be normalized at port 1 to the parallel combination of R and

RL and at port 2 to +R. Then, for port 2 terminated in -R as shown, the transducer

power gain becomes:

2 P L s i 2 2 1 

G( -) = I = sin l - (130)
Pm 4luw
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where P = power to the load

P = maximum available power from the generator
m

RTs Z - L

L g

(The derivation of (130), which appears in reference 10, is presented in Appendix C.)

The composite Is] structure of Figure 24 is of the class treated in Section

II -B, that in, a cascade of lossless equilength transmission lines augmented by a

stub configuration producing a second order zero of transmission at the quarter-

wave frequency. (We constrain the stubs to be lossless and of length commensurate

with the lines). Thus, we may specify is 1 21 2 , corresponding to the structure of

Figure 24, in equiripple fashion; to achieve appreciable stopband fall-off, let the

equalizer be prescribed as composed of four cascaded lines. Then:

2 2
Is1 -b I -b (131)

1 + Ccos (4 0+2.p) 2 2
1 + -+ - cos(8 + 26)

where x = cos = a sin 0.

The 1812 so defined pertains to the network wherein the diode approximate

model is used; we anticipate no substantial change in behavior over the frequency

band of interest when we revert back to lumped reactances. Thus, by so specifying

1o1212, we approximate the transducer power gain as an equiripple shape. This can

be seen by noting that for the lossless reciprocal structure:

1111 --- 18121 - 1 22 ( 132a)

and in the passband (i.e., region of high gain), >.L- >> 1 so that:

2 -sin 2 12G -w = 4 S I3b

Having the form of Isl12, we must now prescribe the constants a, b2, and
2

g The first of these, a, is fixed by the desired bandwidth and certain practical

considerations. If, as an illustration, we seek amplification over a frequency band

extending from d.c. to I kmc, then at f = fI = 10 9 cps, x = 1. Moreover, suppose

further, we do not wish the transmission lines which will constitute the equalizer,

to be of length less than one inch. These constraints essentially fix the upper
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bound of a at 2.00. For a = 2.00:

1 = 2 sin 0 1 and 2= 2 sin 0

or

01 = -W and 0 =W

(where the subscript 1 denotes passband edge parameters and the subscript o denotes

-wave frequency parameters) .

Consequently: ZW fl I

0 0f I

or fo = 3 f 1 = 3 kmc, and since v = 3 x 1010 cm/sec., i 2. 50 cm.

Another factor influencing the choice of a arises from the approximate

model being used for the diode. This model is to approximate the diode behavior

over a frequency band. As is indicated in reference 9, this approximation is
enhanced by decreasing the ratio fc/fop which for our design will become fl/f0

(i.e., we setfc = fI = 10 9 cps); hence, the approximation is bettered by increasing a.

A compromise must therefore be made to accommodate these considerations.

A reasonable value, and that which will be adopted, is a = 2. 00.

The parameters b and t2 must be selected in such a manner as to make

the diode approximate model applicable. We are designing a network which will

initially be realized in the form of Figure 24; then, using equations (129b) in inverted

form, we will substitute the diode lumped reactances for the stubs. If this procedure

is to be successful, the value of the stub immittances which result in the synthesis,

must transform into lumped reactances having values consistent with those encountered

in tunnel diodes. Essentially, then, we must be able to prescribe proper values for

the stub characteristic immittances. These values must be transformable to

tunnel diode-type lumped reactances; the resultant amplifier must in turn realise a

reasonable transducer power gain.

The second order zero of transmission at the quarter-wave frequency,

created by the stub configuration, provides the means by which the stub characteristic

immittances may be predicted. Two integral restrictions1 1 pertain. We shall

constrain s 2 2 ( ) to have no zeros in Re (k) > 0 such that these restrictions become
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equalities. Then, from Figure 23 with E = 0 and -R disconnected:

In- I d 0*J' In dfi Z

o Is22 (j o)

and (133)

2 ~3 - Z

f iz~ in .L. d12Z - 3~y"

One notes from equations (131) and (132a) that the parameters b 2 and c2

influence the integrands of equations (133) and therefore influence the values of the
2

stub immittances. (b > 0 is prescribed to prevent both gain oscillations and

j Q-axis logarithmic singularities of the integrands.)

Using the relations of (133), suitable stub immittances may be determined

through a trial and error procedure. A reasonable gain and tolerance is initially

chosen (essentially by guesswork guided by experience). Then, using equations2 2

(131) and (132a) in conjunction with (132b), the constants b 2 and r are evaluated.

Equation (131) is thereby completely specified. (Note that, in view of the approximat-

ed gain and the approximate diode model, the specified tolerance should be less than

the desired.)

The integral relations may then be numerically evaluated and the correspond-

ing stub immittances determined. If the associated lumped elements prove of the

magnitude encountered in tunnel diodes, one may proceed with the synthesis; if not,

one must select another gain-tolerance combination and repeat the procedure.

The angle qj in equation (13b) may be arbitrarily prescribed beforehand;

any subsequent alteration required to accommodate a particular load or generator

impedance will alter only the gain level and not the integral relations.

For the design in question, with 4j 450, a suitable specification proved to

be a gain of 19.0 db - 1.0 db, over the desired I kmc band. From equation (13b):

G = 100. 00 =Imax 4b

and 21 I+£2
GMin = 63. 0957 (b+ T-

or (134)
2

b = 0,002500

£ = 0.001468
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Substituting these values into equation (131) and applying (132a), we obtain:

2iz 0. 003234 + 0. 000734 cosO t + 2 6) (3
Isi 1.000734+ +.01oo coe(5 z6)

where, for a Z.00:

cos(8*+ 26) 1 4 (lz8x -Z56x x+ 160x4.3Zx+ 1)(97x 4 -104x 2 +16)+(2 -) 41

(139b)

+ 13.85641 (7x2 4)(l8x 0 0. 32Ox8+ 27Zx6 88x4+8x )]

The integral relations were then evaluated in the x-domain. Since x = a sin (,

a2 = tan2 0=-z . . Equations (133) thus become:
~ x

3
oL ( a "x) In 5"' dx = Irv

ZfaZXZ Z fl Zr

and z W3 'z1 (136)

Ck2 f x Z( Z )Tl 1 1nd -
0 192214 z I1 2 R

FiguresZ5 and 26 show the plots of the respective integrands. The dashed

curve in Figure 25 indicates the behavior of 1he integrand wherein the pa.sband

behavior of IsZ212 is approximated by its mean value (i.e., 0.003234 An the

graph indicates, this approximation is quite good; in using it, one can avoid a

considerable amount of calculation.

For R z 30 ohm, the stub immittances were subsequently evaluated as:

Y 2 = 0. 05477

(137a)

z"I = 69. 8011

Using equations (179b) (for f. = 109 cps), the corresponding lumped elements were

determined to be:

C a 5.035 pf
(13T)

L a 6.417 nh



0

- - N

o N

0

0
N

do0 0 PO

0 0 0



Nt

100

10

AL

0

CC

NN

NN

NAN

00 0 0 00

0 0 0 0 00



56

The resistance and capacitance thus determined have magnitudes typical

of tunnel diodes; the inductance, however, is somewhat high. Thus, it will prove

necessary to add series inductance. This is not too stringent a condition, since

in ordinary tunnel diodes the inductance depends on the lengths of the leads.

Since the reactances prove acceptable, we may proceed with the synthesis.

From equation ( 135):

is2212 = 18.226206 x 1 2 - 55. 987201x 10+64.820134x 
8 - 34. 82 927 1 x 6 +

+ 8. 545831 x4 - 0.8029056x 2 +0.063488

18.226206x 1 2 -55.987201x I 0 + 64.820134x 8 - 34.829271x 6 +

+ 9. 543331x 4 - 8.7829056x 2 + 16. 023488
(138a)

2 41 2

For a = 2.00, x =- . Therefore,
0 +1

1922(j")12= 31822.1284576 
12 - 30298.949248l

10 + 10695.9701440 8

- 1712. 9866246 + 121. 6275040 4 _ 2.830694492+ 0.063488

31822. 12 8 4 5 7 6 11Z 30298. 949248110 + 107i 1; 9301440 8

- 1649. 1466240 6+217.38750494+ 61. 0093056912 +16.023488

(138b)

Equation (138b) was factored by a computer. Selecting left-hand plane zeros of

(k) and noting the capacitive nature of port 2 at infinity (i.e., s2(0o) = -1), the

resultant form became:

s 2 2 (x) = 60.407052X50.558913X 4 0 . 157585X3O .076012X 2-0. 011215x

- 0.001412

x6+ 1. 614896X5+ 1. 780010X 4+1.239671 X3+ O. 58 6 027LZ + 0.167 9 8 1X

+ 0. 022439

(139)

Using equation (139), the network of Figure 27 was synthesized.
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2. 20? 51 ONHM

1.13430.605 2.30 0.415 3.269 -I.MHO
AMHO M HO MHO MHO

A 22.50Cm

Figure 27 - Synthesized 4-Line Amplifier with Transmission Line
Diode Model

If the impedance level of Figure 27 is raised to R 30 ohm, the stub

immittances will become:

Y 1.585=0. 05519 5mho1. 65585YZ =  30 =0059 h

1 =(2. 20751)(30) = 66. 2253 ohm

From (129b):

C 5.074 pf.

L 6. 088 nh.

Substituting these lumped elements for the stubs, the resultant amplifier

becomes that shown in Figure .8:
6.068 nh.

52.90 OHMS 52.90 37.267 12.712 72.150 9.177

E_ OHM OHM OHM OHM OHM 5.04 pf. -30 OHM
- - _ _ _- - - -1

z 2.50 cm

Figure Z8 - 4-Line Tunnel Diode Reflection Amplifier

The transducer power gain of the amplifier as a function of frequency is

now to be determined. To accomplish this, we must initially consider the network

of Figure 28 with port Z terminated in a +R (i.e., +30 ohm) resistance. This

artifice arises from a somewhat subtle but highly important point.

The derivation of the transducer power gain, G(w 1, as shown in Appendix C,

is done for port normalizations of R and +R, with the respective terminations being

R and -R. Thus, one might question the above change in the port 2 termination.g
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Note from equation (130), however, that determining G(wi) necessitates the ascertain-

ing, of s 1 1 (jw). This scattering coefficient is one of four which, for specified port

normalizations, characterizes the two-port composed of the transmission line

cascade in tandem with the reactive L-section. That is, although the derivation of
2.

G( )' depends upon specific port normalizations and terminations, the scattering

coefficient s 1 (jw) itself is independent of terminations.

One observes from Figure 28 that a parameter which can be determined with

relative ease is a port 1 input scattering coefficient, normalized to R . Evaluating

this term involves essentially Smith Chart techniques. We wish now to relate this

input coefficient to s 1 1 (jw). As reference 2 points out, the port 1 input coefficient

equals s1 1 (j w) if port 2 is terminated in its match (i.e., +R), upon which a 2 equals

zero. If port 2 is terminated in -R, bz becomes equal to zero and no simple

relation exists between sin (j ) and s (j w).

Thus we use the +R port 2 termination as a means of readily evaluating

s 1(jw ). This parameter, for the same normalization, does not change when we

subsequently revert to the -R termination. For this latter configuration, the

transducer gain given by equation (130) applies.

Figure 29 shows the variation of G(w 2) with frequency for the amplifier of

Figure 28. This response was evaluated by an entirely numerical procedure for

reasons of accuracy; the Smith Chart was not used.

Throughout the course of this synthesis procedure, two approximations

were made; the diode was approximated by the transmission line model and the gain

relation was approximated by equation (132b). Thus, as Figure 29 indicates, the

exact gain expression, when evaluated for the network of Figure 28, deviated somne-

what from the specified 19.0 - 1. 0 db. By sacrificing some gain for better toler-

ance in the initial specification, it is felt that one may achieve ultimately an even

better response.

In the design, R was arbitrarily set equal to 30 ohms, since -R = -30 ohms

is a value typical of tunnel diodes. Note that, once Is1 21 and R are numerically

specified, the transparency of the system at d.c. fixes R • R ,in turn, involves
g 9 ,

Rg, RL and the angle 4. This angle may be subsequently varied, at the expense of

gain, to accommodate, within certain limits, a particular R L or R g. If the

design in question demands both a particular RL and Rg, both R and are thereby

fixed for a given 1slZ Z
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MRI-158865
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The major shortcoming of the design procedure is its inability to guarantee

a stable amplifier. Smilen and Youla 1 0 show that any diode for which L/R 2C < 3

can be used to design a stable amplifier. Reference 10 further derives the necessary

conditions for the stability of a reflection amplifier; s 2 2 (p) can have no zeros in

Re(p) > 0 and s 1 1 (p) can have no zeros in Re(p) < 0.

The only condition which we satisfy with certainty is the inequality. From

equations (131) and (132a), one notes that 0 < Is22 (i)1 2 < I. Hence the integrand

of equation (133) is non-negative, or ZI/R 2 Y2 > 3. From equations (129b),

however, ZI/Y 2 = L/C.

The inability to predict or control the critical frequencies of the scattering

coefficients stems basically from the transcendental functions inherent in network

descriptions of transmission line-lumped reactance mixtures. The scattering

coefficients, over which we have explicit control, are those characterizing the

system of Figure 24. The s22 coefficient of this system was selected without zeros

in Re 0) > 0. The substitution of the lumped reactances for the stubs essentially

creates a new lossless reciprocal two-port, characterized by its own scattering

coefficients. Over these latter parameters, we have no explicit control.
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APPENDIX I: Synthesis Example of a Type II-C Network (i.e., same order zero@

of transmission at d.c. and the quarter-wave frequency)

The most elemental network of this class, a two-line cascade augmented by

a stub configuration realizing single order zeros, is to be synthesized. As

representative bandwidth and tolerance parameters, we select:

' Z2.00

2
a =0.01

Then, from equation (63) (with n Zm 2 and r = 1):

0.99 (A-1)
's 12'= 1 + 0.01 cos (z + 6)

Therefore:

1 s1 = 1 "s 12= -0.27856x 4 + 0.29856x Z - 0.080,0
2 0.Z7856x 4 + 1.28856x -4.0400

x =a cosZe. Thus,x 2 = where 1tan=~~~(1+ )z hr a

Substituting into equation (A-2):

=(J)1  -3. 3427Z 1+* 17. 507840 29. 610240 +17.507840 2 - 3.34272 (A-3)-3.34272Q 8 + 1.667840 6- 6 1.290244 + 1. 6 6 7 8 4 0z - 3.34272

for which:

M 4 + 2. 61875 2 + 1 , (A-4)

x 4+3. 5063 0 +6.3972. +3.5063 X+ 1

Note that by selecting eI1(0) = 0l1(O) = +1, we shall realize the zeros of

transmission through series, rather than shunt, stubs.

The corresponding port I input impedance is:

Z(>) 2 4+ 3.5063),3+ 9.0160)X2+3.5063 X + 2(
3. 5063 0 + 3. 7784k Z + 3. 5063 k

The network of Figure A-1 resulted.
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IOM0.570 0.570
OHM OHM 0.?15 0.?15 0. 365 OHM

Figure A-1 Network Realizing Equiripple Response -with Zeros of
Transmission at D.C. and the Quarter -Wave Frequency

APPENDIX II: 'Factorization for the Special Case wherein the Order of the Zero

of Transmission is Equal to the Number of Cascaded Lines

For this case:

or (B-I1)

181212 =-o (Z + n6) + 1 + k/c2

cos(2n*+ n6) + 1/cz L

1. Numerator Equation

coo (2 n+ n 6) =-(1

Let

2nio+ n6 = p+ jr (B -2)

Then: k2

cou p cosh, n-j sinp sinhrn= ( +-)

or:

*in p sinh i 0

coop cosh,1 =-(I+k

Therefore:

P - (2 tn + 1) wr m =0, 1, 2,

+ -1 k2

i~cosh (I1+!)
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From equation (B-Z), then:

2n o+ n6 = t(2m + l)w tj cosh 
(I  + --Z

or

2b+ 6 = +(2m + 1) E j cosh 1 ( + 2

n n

Thus:

cos(20+ 6) =coo (Zm+ l)!t jIcosh- 1 (1+7) (B-3)

Let these values be represented by m"

2. Denominator Equation

By an identical procedure:

cos(Z+ 6 ) = c= coo (q + I)! sh- (1 ) (B-4)co(@ 5 q os(q n nj C

q = 0, 1, 2,

3. cos(Z + 6) = coo 24 cos 6 - sin 2@ sin 6 =

1 [2x2 - 1] [(2-1)Z 2]- [ 2 x/x-2] [a -(a27 - 1)

(a
z _ x

z )

Therefore, from equations (B-3) and(B-4):

4(4a+4a , - 2) - x(4a +4a.2 - 1 - ,) 1 a2(1-c) = 0 (B-5)

where the proper t -set must be used.
2

4. For zeros of transmission at d.c., x = a cos 0, or x2 -

Therefore: (1+ ) )

4 23 42 43-7

(B-6)
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Therefore:

4'M a 1 )2-4l 444CjL_ MtjI(~ + 1Z7 M .. )t1( ~ yl
(B-7)

By substituting the M and q sets into the above relation, one can obtain

the numerator and denominator roots for s 1(X ) . The condition, S11(0) = - 1,

the sign depending upon the type of network desired, determines the required scale

factor for the factored Sil11 ).

5. For zeros of transmission at the quarter-wave frequency, x = c sin 0, or
2 2  2 /- 2x = CL / a+.

Therefore, substituting into equation (B-5):

4(2+4a4+ 4a 4 a [ 1 i - 6a) + a(3--4aZ-4a l ) + (l- ) = 0 (B-8)

The roots are consequently:

=t +_ - I + 3) - (3- - -4a 4 a-l - , Z+,-' ,. - -4 -( +a. 4a
)~t2/214a + 4a +612

(B-9)

Since quarter-wave frequency zeros of transmission demand that

S l(co) = 1, the scale factor for this case will involve, at most, a change in sign.

APPENDIX III: Derivation of Reflection Amplifier Transducer Power Gain*

Figure C-I shows the reflection amplifier, with the input circuit represented

by its Thevenin equivalent circuit deduced from Figure 24.

A

A LOSSLESS RECIPROCALlqvi (I) (} -RE9 V, (1) ~ TWO - PORT () V_

Figure C-i - Reflection Amplifier Representation, With the Input Circuit
Replaced by its Thevenin Equivalent

This derivation is taken from Smilen and Youla.1 0
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RL R2
Rg =L+ R R sin (C-i)

R =E sinz 4 (C-2)
g gR L +R5  g

where, RL = Rg tan 2. The port normalization numbers are selected as:

R 1 = Rg (C-3)

R Z = R (C-4)

In terms of terminal voltages and currents, the incident and reflected

"voltages" are given as:

(i = 1, Z) (C-5)
bi  T _ Vi - Ri  i

where the R, are the normalizing numbers.

From Figure C-I:

V 1 = Eg - I I Rg9

VI 1 2 R

Therefore, for the given normalizations, from equations (C-5):

a 1 = (C-6)

g

and

b2 = 0 (C-7)

From (C-i) and (C-2):

E sin
a, 1/z../ (C-8)

Zg
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The maximum available power from the generator is:

I E 12 z 2(C9
m =- = lall cac ,c-9)

The power to the load is:

L R L (C-)10

which, from (C-5) in conjunction with (C-i) and (C-2), becomes:

PL = Jal + b, I ? cos+ + (C-li)

Noting equation (C-7), the equations characterising the network become:

bI =a 11 a1 
+ 912 a 2

(C-l2)
0 8 12Sa1 + s22 az

Thus, 2

b= I 2 12 (C-13)I22

As a consequence of the unitary condition, the following relations apply:

Sll(-P) S1 2 (p) + s 1 2 (-p) s 2 2 (p) = 0 (C-14)

a 1l(P) sl'(-P) + 812 (P) 12 (-P) = 1C-15)

By multiplying (C-14) by the factor [a1l(P) S 2 (p)] and then using (C-15), one can

show that:

s (P ) ' 2Z (P ) - " (p )
1 12(p) I (C-16)

Therefore:
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p U W (o)Z la, 12z  (C-17)

and

G(w )=s(w
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Fig. 12 Equiripple Shape For the Case of D. C. and
Quarter-Wave Frequency Zeros of Transmission

Fig 13 Shunt, Short - Circuited Stub, Bandpass Filter
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Fig. 14 Bandpass Filter Schematic
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Fig. 16 Bandpass Filter With Stub Shunting Load
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Fig. 22 Equivalent Circuit of a Tunnel Diode (neglecting
Junction spreading rernltance).

ZA

Y2-R

Fig. 23 Approximate Model for the Tunnel Diode (neglecting

Junction spreading resistaftce).
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Fig. 24 Tunnel Diode Relection Amplifier, with Diode

Approximated by Transmission Line Model
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Fig. 27 Synthesized 4 - Line Amplifier With
Transmission Line Diode Model
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Fig. C- I Reflection Amplifier Representation With the Input
Circuit Replaced by its Thevenin Equivalent
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